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This paper deals with plastic deformation caused by the difference of 
specific volumes of solid and fluid phases of matter during local melt- 
ing in a solid body. It is shown that, in the process of hardening of 
the region of melting, large (in absolute value) negative pressures may 
arise in the fluid, and that they can cause discontinuity of the fluid. 
The latter phenomenon causes the existence of cavities in the body after 
full hardening. 

Local melting is the melting in a small region of a solid body caused 
by generation of some quantity of heat in a small volume during a short 

period of time. 

In this paper, the assumption is made that the heat isinstantaneouslY 
generated at a point in the interior of an isotropic solid body. Immedi- 
ately after the heat is generated, the matter in the infinitesimal volume 
around the origin of the coordinate system becomes melted. The spherical 
boundary between the fluid and the solid body of the radius re (implied 

by the symmetry of the problem) moves in time in the following way: 
initially, r,, increases in time (melting caused by temperature increment 
at the origin of the coordinate system), reaches its maximum value rl 
and then decreases (hardening caused by flow of the heat out of the zone 
of melting) and approaches zero. 

It is assumed that the fluid phase of the matter has the specific 
volume larger than the specific volume of the solid phase, and that the 
relative increment of the dimensions c,, during melting exceeds the 

1273 



1274 A.M. Kosevich 

deformation at the yield limit of 

Consequently, the formation of 

and L.V. Tanatarov 

the material. 

a region with a considerably “excess- 
ive” specific volume results in the creation of a zone of plastic de- 
formation of the solid body around this region. The character of deform- 
ation during melting, when the region of the fluid phase expands (load- 
ing in a solid body). is essentially different from the character of 

deformation during hardening, when the region of the fluid phase decreases 

(unloading in a solid body). 

Because of the irreversibility of the process of deformation, some 
permanent changes of the material occur after re-hardening of the region 
of melting; they will be discussed later. 

In the analysis of the described phenomenon, the relaxation processes, 
which may arise in a solid body in high temperatures, will be neglected. 
This is allowable if the period of melting and hardening of the material 
in the region of the radius rm is smaller than the characteristic relaxa- 
tion time. In addition thermal stresses will not be taken into account, 
as they are negligible if a AT << c,,, where a is the coefficient of 
thermal expansion of the body and AT is the temperature increment at 

local melting. These simplifications allow for the direct application of 
the theory of elastic-plastic deformation. 

Note that all the considerations and results of this paper do not de- 
pend on whether the spherical region contains the fluid phase of the 
matter or an isotropic solid phase. It is only essential that the 
specific volume of the new phase exceeds the specific volume of the pre- 
ceding phase. 

1. Deformation of the solid body during melting (loading). 

Consider an infinite isotropic body with a spherical cavity of radius rO 

filled with a fluid. The radius of this cavity increases in time; it is 

assumed, however, that r, is much smaller than the velocity of sound in 
this medium, The latter assumption allows for assuming the system 

- solid body as being in equilibrium for every fixed rO. 

Spherical symmetry of the problem implies that some components of 
stress and tensors are 

fluid 

(r, q5, $ are spherical coordinates whose origin is in the center of the 

fluid sphere) and the off-diagonal components of these tensors vanish.* 

* The non-vanishing components of the tensor uik may be expressed in 
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Thus, the intensity of shear stresses* is proportional to 04 - 0,. (or = 
urr), the intensity of shear strains is proportional to ~4 - 6 r (tr e 
urr) and each element of the solid body is subjected to proportional 

loading [ 1 1 . 

?%e components of the stress tensor @ik are related by the equations 

of equilibrium, and the components uik are related by the compatibility 

equations. In the fluid, the pressure p is constant over its volume if 

gravity forces are neglected. ‘Ihe tensors oi& and “ik satisfy the follow- 

ing boundary conditions: 

1) lhe surface of the body at infinity is free of stresses 

or =o for r=oo WI 

2) On the boundary of the solid body and the fluid, the surface 

stresses are continuous 

or = - p for r = r0 (1.2) 

and the deformations are continuous 

s, = eo - klp for r = r0 (4.3) 

where k, is the coefficient of compressibility of the fluid, and 3r, is 

the increment of specific volume during melting. 

In order to determine oik and “i) which satisfy the conditions (1.1) 

to (1.31, it is necessary to establish the relation between the tensors 
oik and Uik. Using the relation between the volume deformation and the 

mean pressure, which is valid in a wide range of volumetric deformation, 

the following relations are easily obtained: 

terms of the only non-vanishing radial component 

ment vector: 

%ip = t-G&,, %r = da, j dr. 

* The fntensfts of shear stresses 12(u) is defined 

u r of the displace- 

in the usual rag as 

(repeated indices denote summation). The intensity of shear strains 

is similarly expressed in terms of the strain tensor. 
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sq - ET + 2k (a, - a,) =; (1.4) 

ep - ka, = & , C- const (1.5) 

where k is the coefficient of compressibility of the solid body. 

Equations (1.5) and (1.3) g ive the relation between C and the pressure 

p in the fluid 

C 
- = ~0 + (k - kd P 
3rOS (1.6) 

The pressure in turn may be expressed in terms of the stress intensity 

,=2p+ (1.7) 

if relations (1.1) and (1.2) are used. 

It is essential that relations (1.4) and (1.5) (and also (1.6) to 

(1.8) derived from them) do not depend on the type of relation between 

the intensity of shear stresses and the intensity of shear strains. 

ETquations (1.6) and (1.7) may be transformed into one equation for the 

determination of the constant C: 

c 
- =s,+l(k-k$=%r 
3rOs (1.8) 

In order to assign a meaning to Equation (1.8), 

it is necessary to find the variation of 04 - or 

in T, which is determined by the relation between 

E+- cr anda4- ur. 'Ihe theory of elastic-plastic 

deformations [l 1 establishes this relation for 

the increasing loading in the form 

$8 

L! I 
I 

0 a, 6 

Fig. 1. 

se - ET = g (4 Q, 6 = 6, - 6, Cf.3 

where g(u) is a monotonically increasing even function which is constant 

for small a; g(0) -f 2g for u + 0. The diagram of the function g(u) u is 

schematically represented in Fig. 1. 

If (1.9) is substituted into (1.4), the relation a = u(r) is deter- 

mined in the implicit form by the equation 

G (0) =$, G (a)= [2k + g (a)1 0 (1.10) 
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'Ihe constant C can be found from (1.8), as previously indicated. 

In the following, it will be advantageous to introduce, instead of C, 

another constant o,-, = o(rO), which is related to C by the equation 

c = row (60) 
cjp’d?# 

ea 

0 LlL 
'The equation for o0 follows from (1.8) and (1.10). 

The introduction of the constant a0 allows the 
_-___- 

I 
writing of the expression for the fluid pressure in 

s, 
6 the form 

Fig. 2. 
P'$ O0 G' (6) ado 

s G (6) 
(1.11) 

0 

Equation (1.11) indicates that the fluid pressure does not depend on 

r,, (which is a consequence of the dimensional properties of this prob- 

lem), and is determined by the quantity ca. For co = 0 the fluid pressure 

becomes zero. 

If the compressibilities of the fluid and the solid body are identical 

(k = kl), then the stress a,, is determined by the equation 

G (do)= 3.~0 (1.12) 

In the case of Prandtl's model (Fig. 2), which assumes that E* - t _ 

and o = u 
4 
- or are related by 

above the yield point (es, 0~1 

different functional relations below and 

% -8e,= 2ya 

o = OS= con& 

the pressure p is given by the expression 

p=$a,[i +1I+)s] 

(1.13) 

(1.14) 

where a is the radius of the plastic zone [l I, determined by the equa- 

tion 

(1.15) 

From (1.15), for k = k,, follows the relation 

d a 

(> 
-= 

r0 25s (lo+ PI 
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and, for more general cases, the order of magnitude may be estimated by 

a3 e. 

( > 
- -- 
r0 % 

2. Deformation of the solid body during hardening (unload- 

ing). After the process of melting is terminated, and the radius of 

the fluid reaches its maximum value F,, the reverse process of hardening 

of the fluid starts. ‘Ihe hardening of the fluid phase on the boundary 

F = F,, is equivalent to the formation of a thin layer of the solid phase 

on the deformed and stressed base. Here, two cases are possible. 

Case A. The growing solid phase carries elastic stresses developed in 

the base. It is assumed, thus, that in the newly created, infinitely 

thin layer cf the solid body an instantaneous stress arises which is de- 

scribed by the equation 

sP - 8, = g0 (0) 0 (2.1) 

&+96 

li 

where g,(o) is a monotonically increasing function, 

in general different from g(o), and having the 

following properties: 

I 1. For small o, the function go(o) has a hori- 

I zontal section (g,(o) + 2~ for o + 0); 

0 
I 

6 
4 2. As o approaches ooo, the function g,(o) o 

Fig. 3. approaches asymptotically the vertical line (I = us”. 

In the course of hardening (;a < O), the motion of the boundary causes 

the unloading of the material around the melted region. As usual, the 

unloading is described by a linear relation between the changes of strain 

and stress tensors 

d (a+ - E,) = 2pdu (2.2) 

Using the differential equation (2.2) for the relation between finite 

changes, it is necessary to remember that the origins of unloading are 

different in the regions F > rm and F < rll. In particular 

a* - ET = 2j-W + lg (V) - 2/k] 2, ('>'m) (2.3) 
Eq - e, = 2pJ + [go (C) - 2p1t (r <rrn) (2.4) 

where v is the intensity of stress u for F,, = F,,, and it is determined 

by Equations (1.10) and (1.12) with FO = F,,; 5 is the value of (T in the 

region of solidified material at the start of unloading, and corresponds 

to maximum loading at a given point. l’he quantity 5 is determined by the 
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intensity of stresses at a given point at the time when the boundary 

passes it: 

o=5 for r = ro (2.5) 

With the use of (1.4), relations (2.3) and (2.4) yield the expressions 

for u analogous to (1.10): 

2 (CL + k)a + [g (v) - 2pl v = ; (r > pm) (2. f-3 

2 (p + w 0 + [go (5) - 2p.l 5 = g (r<r,) (2.7) 

Because of the continuity of ur and c+ at the point r = ra, the con- 

stant C is the same in both (2.6) and (2.7). This constant is related to 

the value of the function 5 = c(r) for r = rO. Indeed, (2.5) and (2.6) 

imply 

c = ro3Go (5), Go (5) = 1% + go (C)l 5, 50 = 5 PO) (2.8) 

Determining the stress intensity from (2.6) and (2.7), substituting 

it into (1.8) and using (2.8), the equation for the function 5 = L(r) is 

obtained: 

Go (Co) = 3~0 + 6 (k -kq+dr (2.9) 
r. 

'lhe integral equation (2.9) determined r(r). Since the function t, does 

not depend on r,,, differentiation of (2.9) with respect to r,, gives 

Go r. dro = 

Integration of (2.10) gives 

(2.10) 

(2.11) 

The relation (2.111, together with (2.6) and (2.7), determines the 

distribution of stresses in the solid body during the process of unload- 

ing. 

From the known distribution of the stress intensity in the solid body, 

the fluid pressure p = p(r,) may be easily determined; during unloading 

it depends on the position of the boundary, i.e. on rO. ‘Ike pressure is 

determined by Equation (1.7) using (2.6) to (2.9): 
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P=Prn- 
Go (5m)--G&o) _ Go (Co) - 3~0 

3(k---I), = 3 (k--k3 
(Pm = P (‘m)) (2.12) 

Here, p, denotes the pressure at the beginning of hardening (the 
pressure produced by melting). 

The dependence of the pressure on f, becomes especially simple if 
k = k,. Then, from (2.10) follows r E L,,* = const, and the pressure may 
be conveniently determined directly from relation (1.7): 

p = pnz __I go cc*) - 2cl 
k + ~ - r 111 (e) (2.13) 

The pressure in the fluid decreases during unloading with progressive 
hardening (iO < 0). In fact, 
that for 5, > 0 

the properties of the function g,,(c,) imply 

dp 
dTo = 

where the equality dp/dr, = 0 occurs only for the elastic type of rela- 
tion (2.5), i.e. 
must be b < 0. 

for go([) = 2~. Because during hardening i0 < 0, it 

It is easy to see that the decreasing ptr,,) assumes value zero, i.e. 
the value of F. > 0 exists (denoted below by pO) for which p = 0. This 
value of F,, satisfies the condition following from (2.12) 

3~0 = Go (go) (2.14) 

Relation (2.14) may be considered as the equation for Lo. If the root 
of this equation is denoted by c (it is significant that this quantity 
has entered into (2.13)), then p,, may be determined explicitly by rela- 
tion (2 .ll): 

plnc = ‘s’ Go’(Qdc 

Cm ko (5) - 2/L] I; 
(2.15) 

For F. < p. the fluid pressure is negative. 

If the compressibilities of the fluid and the solid body are identical 
(k = k,), then from Equation (2.13) 

In+ = _ tk+P)Pm 

m 1 go (<*I - &I <* 

Case B. The growing solid phase deforms in such a way that it under- 
goes only uniform pressure. In this case, shearing stresses in a newly- 
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created, infinitely thin layer of the solid phase are assumed to be equal 

to zero*: 

a=0 for r = r. (2.16) 

Therefore, instead of (2.4) the relation between e+ - E r and u is 

% - s, = 2p.a + qo (r < r?n) (2.17) 

where qO is the value of the strain intensity t+ - cr in the region of 

hardening at the beginning of unloading. The quantity qO is determined 

by the intensity of strain at a given point at the time when the bound- 

ary surface passes this point. 

Indeed, from (2.16) and (2.17) 

sV - Ep = qo for r = r0 

Here, the function qO = go(r) is to be determined. 

Comparison of (2.16) and (2.5) with (2.17) and (2.4) indicates that 

the results obtained for Case A may be used for the analysis of stresses 

and strains if 5 = 0 and g0(5)[= q,, are assumed. (It is only necessary 

to take into account that q,,(r) is an unknown function of r, while g,,(c) 

was assumed as a known function of the unknown quantity [>. The equation 

for go(r) follows directly from (2.10): 

(2.18) 

and the boundary condition for r = rl 

follows from (2.11): 

qo (I;n) = 3~0 + 6 (k - kl) 7 +dr 
l 

pm 

(2.19) 

where the value of u is, as previously, de- 

termined from the condition (1.10). From 

(2.17) and (2.18), a simple expression for 

qJr) follows: 

q0 (r) = [3&o + 3 (k - kl)p,l + 
( ) 

s (2.20) 
m 

Fig. 4. 

In writing (2.20), Exp ression (1.7) was used. ‘Ibe fluid‘pressure is 

l Formally, Case B corresponds to 0 o t 0 in Case A. 
8 
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obtained from (2.12): 

Qo (ro) - 3Eo 
p = 3(k-kkl) 

As in Case A, the pressure becomes zero at the point p0 determined by 

the equation qo(po) = 3~,, with Jp/Jro > 0 at this point. Consequently, 
as in Case A, the fluid pressure becomes negative for r. < p,,. 

3. Analysis of the state of stress in the hody during un- 

loading. For a qualitative investigation of the state of stress of the 

solid body and the dependence of the pressure of the fluid on rO, a 

simple model of plasticity of solids is considered, i.e. Prandtl's model. 

This means, in particular, that the function g,(o) (T, introduced in the 

preceding section, is determined analogously to (1.13), and its diagram 

has the form given in Fig. 2 but with a different yield point (us", eso). 

Specific applications of the presented theory are carried out in 

different ways for different signs of /3. 'Ihis results from the fact that 

the function <, whose value determines the intensity of stresses at the 

beginning of unloading, behaves differently, depending on the sign of 6. 

For p > 0, as follows from (2.10), the quantity 6 is an increasing 

function of r, becoming zero for r = 0, and reaching [, for r = rl (Fig. 

4). If /3 < 0, then 5 is a decreasing function of r, which, on the basis 

of the properties of the function g,(o) u assumed in Section 2, is equal 

to OS0 (0," > <,> for r = 0 and equal to 5, for r = rl (Fig. 4). 

For /3 = 0, the function [ reduces to a constant (= r,. 

In the proposed theory, the part of 5, is played by the quantity us0 

from which the unloading starts at the beginning of hardening. 'Ihis 

theory does not admit for newly-hardened layers the values of C-J larger 

than u,,O. Therefore, if ,0 < 0, the beginning of unloading in an arbitrary 

point r coincides with the stress intensity us"; if p > 0, a region of 

small r necessarily exists in which instantaneous loading in newly- 

created layers of solid body does not exceed the nyield pointl, and u < 
U so corresponds to the beginning of unloading. 

Because the coefficient of compressibility of the fluid phase is 

larger than the corresponding coefficient of the solid phase of a given 

material (kl > k), the discussion may be limited to the case p < 0. 

In this case, instead of (2.4) the relation 

Elp - sp = 21.L (0 - ago) + q8 (r), r < r, 
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should be used, which coincides with (2.17) for us0 E 0. The quantity 

qs(r), as in (2.17)., is determined by stress intensity at the point r at 

the moment when the boundary surface passes this point. In order to find 
q,(r), it is again convenient to use directly the results of Case A, 
Section 2, noting that the formal replacement in all expressions c-, 5,’ 

and go(<)< -, q,(r) is sufficient. ‘lhus, the expression for q,(r) is ob- 
tained: 

with the boundary condition 

q8 (rm) + 2k08” = 3~0 + 3 (k - h) Pm (3.2) 

From (3.1) and (3.2) follows 

Note that the characteristics of the process of unloading in the 
region r > rm do not enter explicitly into (3.3), but that only ps 
appears. Nevertheless, the form of the function qs(r), as well as Aqua- 
tion (3.1), is determined by the linear character of unloading. Using 
(3.3) and (2.14), the equation 

P=Pm- 
@o/r,) - 1 

kl _“, [‘o + (k - h) pm - $ a:.(~ + k)] (3.4) 

may be 

The 
either 

Ihe 

obtained. 

pressure becomes zero at the point rO = p,,, which may be found 
from (3.4) or directly from (2.15): 

PO --p ( ) cl- 
tkl - k, Pm - 

rm eo - $ (k + .w) $l” 
(3.5) 

case of c s >> e8 is most interesting, because for high tempera- 
tures the yield point is low and the change of volume during melting is 
large (usually c,-, Q lo-*). In this case, the point rO = pO is very close 
to rO = rl. In fact, because (n(a/r,J3 in relation (1.14) depends only 
slightly on the ratio CO/es, it is approximately p, % us, and, conse- 
quently, the second component of the right-hand side of (3.5) may be 
estimated as 
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Ibis estimate permits us to set 

In the linear approximation with respect to n, Equation (3.5) gives 

(kl + PL) P, (kl + P) pm 
“l = 3~ - 2 (k + p) aso = 3~ (3.6) 

As might be expected, v is not too sensitive to oSo. 

If ro < PO, the pressure in the fluid becomes negative, and its 

absolute value rapidly increases as r. decreases. It is easy to verify 

that if the boundary surface moves from the point r. = rm at the distance 

211, the absolute value of pressure reaches 

p = -pm for r. = rm - 29 (3.7) 

In this 

fluid, the 

Because 

way, even for a relatively small amount of Hfreezingn of the 

negative pressure becomes very large (in its absolute value). 

of 6 < 0, for very small rO/rr, the negative pressure deter- .~~ 
mined by Expression (3.41 should increase in its absolute value as 

B (;l/~o)- . But the stress intensity at some points would exceed (in its 

absolute value) the limit value us, i.e. the material at these points 

would be beyond the elastic limit. lhis means that for small r,, linear 

unloading in some regions becomes plastic loading of opposite &n. The 

analysis of the stress intensities, which are found from (2.6) and (2.7) 

using (3.31, actually shows that for small rO/rn the absolute value of u 

becomes very large, and it may reach us in the vicinity of r = rl. 

In the derivation of the relations discussed in this section, the 

essential assumption has been made that the unloading has linear charac- 

ter, and, consequently, it is necessary to stay within the limits for 

which this assumption is valid. Therefore, if co >> es, all the derived 

relations may be used only for small (rl - ro)/rm, namely for 

Nevertheless, for small (rm - rO)/r, also, as, for instance, (3.7) 

indicateqthe negative pressure in the fluid may be very large. 

But it is known [2 1 that the state with a large negative pressure is 

a non-equilibrium state and its stability is limited. In other words, in 

such a state the fluid tends to compress itself by separating from the 

solid walls or by creating internal cavities. Ibis tendency is counter- 
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acted only by the fact that during fractures new surfaces are created 
which increase the surface energy of the system. If the increment of the 
surface energy is compensated by the decrement of the energy of volu- 
metric deformation, the fluid will necessarily become discontinuous. 

If in the fluid of the volume Q ra3 a discontinuity occurs, then the 
fluid pressure becomes zero with the velocity of sound, and further 
hardening continues at p = 0. As a result of this, cavities of the volume 
* 6 ara3 are created in the solid body by changes of the specific volume 
of the material after full crystallization of the fluid. 

‘Ihe authors consider it their duty to express gratitude to I.M. 
Lifshitz for valuable discussions. 
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